API Reference
Complete API documentation for PublicRisk.ai Modal backend services
API Reference
PublicRisk.ai provides a comprehensive REST API hosted on Modal Cloud Platform. All services are serverless, auto-scaling, and feature Redis caching for optimal performance.
Base URL: https://publicrisk--publicrisk-consolidated-backend-serve.modal.run
All endpoints require JWT authentication unless specified. Include the token in the Authorization header:
Authorization: Bearer <your-jwt-token>Authentication & User Management
POST /api/auth/login
Authenticate user and obtain JWT token.
Request Body:
{
"email": "user@example.com",
"password": "secure_password"
}Response:
{
"success": true,
"access_token": "eyJhbGciOiJIUzI1NiIs...",
"token_type": "bearer",
"expires_in": 3600,
"user": {
"id": "user-123",
"email": "user@example.com",
"role": "User",
"two_factor_enabled": true
}
}Status Codes:
200- Success401- Invalid credentials403- Account locked
POST /api/auth/verify-2fa
Verify two-factor authentication code during login.
Request Body:
{
"user_id": "user-123",
"code": "123456",
"remember_device": true
}Response:
{
"success": true,
"verified": true,
"session_token": "eyJhbGciOiJIUzI1NiIs..."
}Status Codes:
200- Code verified400- Invalid code429- Too many attempts
POST /api/auth/2fa/setup
Generate QR code for 2FA setup (requires authentication).
Response:
{
"success": true,
"qr_code": "...",
"secret": "JBSWY3DPEHPK3PXP",
"recovery_codes": [
"ABC123-DEF456",
"GHI789-JKL012"
]
}POST /api/auth/2fa/enable
Enable 2FA after verifying setup code.
Request Body:
{
"code": "123456"
}Response:
{
"success": true,
"enabled": true,
"recovery_codes": ["ABC123-DEF456", "GHI789-JKL012"]
}GET /api/auth/2fa/status
Check current 2FA status for authenticated user.
Response:
{
"enabled": true,
"verification_interval": "weekly",
"last_verified": "2025-12-01T10:00:00Z"
}POST /api/auth/change-password
Change user password (requires authentication).
Request Body:
{
"old_password": "current_password",
"new_password": "new_secure_password"
}Response:
{
"success": true,
"message": "Password changed successfully"
}Admin & Organization Management
GET /api/admin/users
List all users (SuperAdmin/Admin only).
Query Parameters:
role(optional): Filter by role (User,Admin,SuperAdmin)status(optional): Filter by status (active,inactive,suspended)page(optional): Page number (default: 1)limit(optional): Results per page (default: 50)
Response:
{
"success": true,
"users": [
{
"id": "user-123",
"name": "John Doe",
"email": "john@example.com",
"role": "User",
"status": "active",
"two_factor_enabled": true,
"client_id": "org-456",
"last_login": "2025-12-01T10:00:00Z",
"created_at": "2025-01-15T08:30:00Z"
}
],
"total": 150,
"page": 1,
"pages": 3
}POST /api/admin/users
Create new user (Admin only).
Request Body:
{
"name": "Jane Smith",
"email": "jane@example.com",
"password": "secure_password",
"role": "User",
"client_id": "org-456",
"permissions": ["read", "write"],
"timezone": "America/Los_Angeles"
}Response:
{
"success": true,
"user": {
"id": "user-789",
"email": "jane@example.com",
"created_at": "2025-12-01T11:00:00Z"
}
}POST /api/admin/users/{user_id}/2fa
Manage user 2FA settings (Admin only).
Path Parameters:
user_id: Target user ID
Request Body:
{
"action": "require" // or "reset"
}Response:
{
"success": true,
"message": "2FA required for user",
"user_id": "user-123",
"two_factor_enabled": true
}GET /api/admin/organizations
List all client organizations (SuperAdmin only).
Response:
{
"success": true,
"organizations": [
{
"id": "org-456",
"name": "Acme Corporation",
"contact_email": "admin@acme.com",
"max_users": 100,
"current_users": 75,
"subscription_tier": "enterprise",
"status": "active",
"features": ["hazus", "storm", "2fa"],
"created_at": "2024-06-15T08:00:00Z"
}
],
"total": 25
}GET /api/admin/audit-logs
Retrieve system audit logs (Admin only).
Query Parameters:
user_id(optional): Filter by useraction(optional): Filter by action typestart_date(optional): ISO 8601 dateend_date(optional): ISO 8601 datelimit(optional): Results per page (default: 100)
Response:
{
"success": true,
"logs": [
{
"id": "log-123",
"timestamp": "2025-12-01T10:30:00Z",
"user_id": "user-123",
"user_name": "John Doe",
"action": "document_upload",
"resource": "doc-456",
"status": "success",
"ip_address": "192.168.1.1",
"details": "Uploaded policy.pdf to RAG store"
}
],
"total": 5000,
"page": 1
}HAZUS Disaster Risk Assessment
For complete HAZUS documentation, see HAZUS Detailed Guide.
GET /health
Check HAZUS service health.
Base URL: https://publicrisk--publicrisk-hazard-service-*.modal.run
Response:
{
"status": "healthy",
"service": "hazus-disaster-risk",
"version": "1.0.0",
"cache_enabled": true,
"data_sources": {
"fema_nfhl": "active",
"usgs_nshm": "active",
"nifc_wildfire": "active"
}
}GET /assess-property
Comprehensive property risk assessment.
Query Parameters:
lat(required): Latitude (-90 to 90)lng(required): Longitude (-180 to 180)property_value(required): Property value in USDyear_built(optional): Construction year (default: 2000)
Response:
{
"overall_risk": {
"score": 7.2,
"level": "High",
"annual_expected_loss": 12500
},
"flood": {
"zone": "AE",
"base_flood_elevation": 12.5,
"annual_probability": 0.01,
"estimated_damage": 85000,
"damage_ratio": 0.25
},
"earthquake": {
"pga": 0.35,
"magnitude_estimate": 6.5,
"annual_probability": 0.002,
"estimated_damage": 150000,
"damage_ratio": 0.45
},
"wildfire": {
"ignition_probability": 0.15,
"intensity_level": "moderate",
"annual_probability": 0.08,
"estimated_damage": 50000
},
"mitigation_recommendations": [
{
"hazard": "flood",
"action": "Elevate utilities above BFE",
"cost_estimate": 5000,
"risk_reduction": 0.4
}
],
"location": {
"latitude": 34.0522,
"longitude": -118.2437,
"county": "Los Angeles County",
"state": "CA"
}
}Cold Start: First request may take 30-60 seconds. Subsequent requests: less than 3 seconds.
GET /realtime-all
Get real-time hazard data for map markers.
Query Parameters:
lat(required): Latitudelng(required): Longitude
Response:
{
"flood": {
"zone": "X",
"risk_level": "minimal"
},
"earthquake": {
"pga": 0.15,
"risk_level": "moderate"
},
"wildfire": {
"active_fires_nearby": 2,
"nearest_fire_distance_km": 25.3,
"air_quality_index": 85
}
}GET /flood-risk
Detailed flood risk analysis.
Query Parameters:
lat,lng: Coordinatesproperty_value: Property value
Response:
{
"zone": "AE",
"base_flood_elevation": 12.5,
"depth_damage_curve": [
{"depth_ft": 0, "damage_ratio": 0.0},
{"depth_ft": 2, "damage_ratio": 0.15},
{"depth_ft": 4, "damage_ratio": 0.35}
],
"estimated_damage": 85000,
"annual_probability": 0.01
}GET /earthquake-risk
Detailed earthquake risk analysis.
Query Parameters:
lat,lng: Coordinatesproperty_value: Property valueyear_built: Construction year
Response:
{
"pga": 0.35,
"magnitude_estimate": 6.5,
"spectral_acceleration": {
"sa_0_2s": 0.85,
"sa_1_0s": 0.40
},
"building_vulnerability": {
"construction_type": "wood_frame",
"expected_damage_ratio": 0.45
},
"estimated_damage": 150000
}GET /wildfire-risk
Detailed wildfire risk analysis.
Query Parameters:
lat,lng: Coordinatesproperty_value: Property value
Response:
{
"ignition_probability": 0.15,
"intensity_level": "moderate",
"fuel_load": "high",
"topography_factor": 1.3,
"wind_exposure": "moderate",
"active_fires": [
{
"name": "Creek Fire",
"distance_km": 25.3,
"containment": 45,
"acres": 12500
}
],
"estimated_damage": 50000
}STORM Document Generation
For complete STORM documentation, see STORM Generator Guide.
POST /api/dspy/storm/generate
Generate structured report using STORM methodology.
Request Body:
{
"topic": "Wildfire Risk Assessment for Riverside County",
"template": "risk_assessment",
"parameters": {
"research_depth": "comprehensive",
"document_length": "detailed",
"citation_style": "APA",
"model": "moonshot-kimi-k2-thinking-general",
"use_rag": true,
"rag_stores": ["hazus_docs", "policy_library"]
},
"context": {
"location": "Riverside County, CA",
"property_value": 500000,
"assessment_date": "2025-12-01"
}
}Response:
{
"job_id": "storm-abc123",
"status": "processing",
"estimated_time_seconds": 180,
"stages": [
{
"name": "topic_expansion",
"status": "completed",
"progress": 100
},
{
"name": "perspective_generation",
"status": "in_progress",
"progress": 60
}
]
}GET /api/dspy/storm/status/{job_id}
Check STORM generation job status.
Path Parameters:
job_id: Job ID from generation request
Response:
{
"job_id": "storm-abc123",
"status": "completed",
"progress": 100,
"result": {
"title": "Wildfire Risk Assessment for Riverside County",
"sections": [
{
"heading": "Executive Summary",
"content": "This assessment evaluates...",
"citations": ["Source 1", "Source 2"]
}
],
"metadata": {
"generation_time_seconds": 165,
"total_words": 4500,
"citations_count": 23,
"rag_sources_used": 15
}
}
}POST /api/dspy/query
DSPy-optimized query processing.
Request Body:
{
"query": "What are the seismic hazards in San Francisco?",
"use_rag": true,
"max_tokens": 1000,
"temperature": 0.7
}Response:
{
"success": true,
"response": "San Francisco faces significant seismic hazards...",
"sources": [
{
"title": "USGS Bay Area Seismic Report",
"score": 0.92,
"excerpt": "The San Andreas Fault..."
}
],
"model": "moonshot-kimi-k2-thinking-general",
"tokens_used": 850
}RAG Management
POST /api/simple-rag/upload
Upload documents to RAG vector store.
Request Body:
{
"files": [
{
"name": "policy.pdf",
"type": "application/pdf",
"size": 1024000,
"content": "base64_encoded_content_here"
}
],
"settings": {
"rag_store": "policy_library",
"chunk_size": 1000,
"chunk_overlap": 200,
"embedding_model": "nomic-embed-text",
"auto_process": true
},
"metadata": {
"category": "insurance_policy",
"tags": ["commercial", "liability"],
"uploaded_by": "user@example.com"
}
}Response:
{
"success": true,
"documents": [
{
"document_id": "doc-123",
"filename": "policy.pdf",
"status": "processing",
"chunks_created": 45,
"processing_time_ms": 2500
}
],
"total_uploaded": 1
}GET /api/simple-rag/documents
List documents in RAG store.
Query Parameters:
rag_store(optional): Filter by store namecategory(optional): Filter by categorylimit(optional): Results per page (default: 50)
Response:
{
"success": true,
"documents": [
{
"id": "doc-123",
"filename": "policy.pdf",
"category": "insurance_policy",
"tags": ["commercial", "liability"],
"chunk_count": 45,
"uploaded_at": "2025-12-01T10:00:00Z",
"size_bytes": 1024000,
"status": "active"
}
],
"total": 150
}GET /api/simple-rag/stats
Get RAG system statistics.
Response:
{
"success": true,
"stores": [
{
"name": "policy_library",
"document_count": 450,
"total_chunks": 12500,
"storage_used_mb": 850,
"last_updated": "2025-12-01T09:30:00Z"
}
],
"total_documents": 450,
"total_chunks": 12500,
"embedding_model": "nomic-embed-text",
"vector_dimensions": 768
}POST /api/simple-rag/search
Search RAG vector store.
Request Body:
{
"query": "What is the cyber liability coverage limit?",
"rag_store": "policy_library",
"limit": 10,
"similarity_threshold": 0.7,
"filters": {
"category": "insurance_policy",
"tags": ["cyber"]
}
}Response:
{
"success": true,
"results": [
{
"id": "chunk-456",
"content": "Cyber liability coverage provides up to $5M...",
"score": 0.92,
"document_id": "doc-123",
"document_name": "cyber_policy.pdf",
"metadata": {
"page": 12,
"section": "Coverage Limits"
}
}
],
"total_results": 8,
"query_time_ms": 45
}DELETE /api/simple-rag/documents/{document_id}
Delete document from RAG store.
Path Parameters:
document_id: Document ID to delete
Response:
{
"success": true,
"message": "Document deleted successfully",
"chunks_removed": 45
}Query Explorer (Multi-Engine Analysis)
POST /api/query-explorer/analyze
Analyze query through multi-engine reasoning pipeline.
Request Body:
{
"query": "What is the flood risk in Miami, FL?",
"context": {
"latitude": 25.7617,
"longitude": -80.1918
},
"return_intermediate": true,
"async_mode": false
}Response:
{
"success": true,
"job_id": "qe-xyz789",
"classification": {
"query_type": "disaster_modeling",
"hazards": ["flood"],
"complexity": "standard"
},
"perspectives": [
{
"name": "HAZUS Analysis",
"confidence": 0.95,
"data": {
"flood_zone": "AE",
"annual_probability": 0.01
}
}
],
"final_answer": "Miami faces significant flood risk...",
"processing_time_ms": 3500
}GET /api/query-explorer/status/{job_id}
Check status of async analysis job.
Path Parameters:
job_id: Job ID from analyze request
Response:
{
"job_id": "qe-xyz789",
"status": "completed",
"progress": 100,
"result": {
"final_answer": "Miami faces significant flood risk...",
"perspectives_count": 3
}
}GET /api/query-explorer/jobs
List recent analysis jobs.
Query Parameters:
status(optional): Filter by status (pending,processing,completed,failed)limit(optional): Results per page (default: 20)
Response:
{
"success": true,
"jobs": [
{
"job_id": "qe-xyz789",
"query": "What is the flood risk in Miami, FL?",
"status": "completed",
"created_at": "2025-12-01T10:00:00Z",
"completed_at": "2025-12-01T10:00:05Z"
}
],
"total": 50
}DELETE /api/query-explorer/jobs/{job_id}
Clean up completed job.
Response:
{
"success": true,
"message": "Job deleted successfully"
}SIPMath SLURP (Correlated Risk Analysis)
POST /api/sipmath/create-slurp
Create correlated SIP distributions (SLURP).
Request Body:
{
"hazards": [
{
"type": "earthquake",
"location": {"lat": 34.0522, "lng": -118.2437},
"params": {"property_value": 500000}
},
{
"type": "wildfire",
"location": {"lat": 34.0522, "lng": -118.2437},
"params": {"property_value": 500000}
}
],
"correlation_matrix": {
"earthquake": {"wildfire": 0.4},
"wildfire": {"earthquake": 0.4}
},
"num_trials": 10000
}Response:
{
"status": "success",
"name": "Multi_Hazard_SLURP",
"coherent": true,
"count": 2,
"sips": [
{
"name": "earthquake_loss",
"type": "lognormal",
"mean": 125000,
"std": 75000,
"trials": [...]
},
{
"name": "wildfire_loss",
"type": "lognormal",
"mean": 85000,
"std": 45000,
"trials": [...]
}
],
"correlation_matrix_target": {
"earthquake": {"wildfire": 0.4}
},
"correlation_matrix_realized": {
"earthquake": {"wildfire": 0.398}
}
}Use Case: Model realistic multi-hazard scenarios where risks are correlated (e.g., earthquake triggering wildfire).
POST /api/sipmath/aggregate-slurp
Aggregate correlated SIPs into single distribution.
Request Body:
{
"slurp": {
"sips": [...],
"correlation_matrix": {...}
},
"aggregation_type": "sum",
"weights": null
}Response:
{
"status": "success",
"aggregated_sip": {
"name": "total_loss",
"type": "empirical",
"mean": 210000,
"std": 95000,
"percentiles": {
"p10": 75000,
"p50": 185000,
"p90": 350000
},
"trials": [...]
},
"coherent_aggregation": true,
"component_contributions": {
"earthquake": 0.60,
"wildfire": 0.40
}
}POST /api/sipmath/hazus-to-sip
Convert HAZUS risk assessment to SIPMath distribution.
Request Body:
{
"hazus_data": {
"flood": {
"annual_probability": 0.01,
"estimated_damage": 85000
},
"earthquake": {
"annual_probability": 0.002,
"estimated_damage": 150000
}
},
"num_trials": 10000
}Response:
{
"status": "success",
"sips": [
{
"name": "flood_annual_loss",
"type": "bernoulli_scaled",
"probability": 0.01,
"loss_given_event": 85000,
"mean": 850,
"trials": [...]
}
]
}Cybersecurity (CISA KEV Integration)
GET /api/cyber/kev
Get CISA Known Exploited Vulnerabilities.
Query Parameters:
vendor(optional): Filter by vendor nameproduct(optional): Filter by product namedays(optional): Recent vulnerabilities (e.g., 30 days)ransomware_only(optional): Boolean flag
Response:
{
"success": true,
"vulnerabilities": [
{
"cve_id": "CVE-2024-12345",
"vendor": "Microsoft",
"product": "Windows Server",
"vulnerability_name": "Remote Code Execution",
"date_added": "2025-11-15",
"due_date": "2025-12-15",
"ransomware_use": true,
"notes": "Actively exploited in the wild"
}
],
"total": 1200,
"last_updated": "2025-12-01T06:00:00Z"
}GET /api/cyber/infrastructure-threats
Get threats by critical infrastructure sector.
Response:
{
"success": true,
"sectors": [
{
"name": "Energy",
"threat_count": 45,
"high_severity": 12,
"vulnerabilities": [...]
},
{
"name": "Water",
"threat_count": 23,
"high_severity": 5,
"vulnerabilities": [...]
}
]
}GET /api/cyber/kev/cve/{cve_id}
Get details for specific CVE.
Path Parameters:
cve_id: CVE identifier (e.g., CVE-2024-12345)
Response:
{
"success": true,
"cve": {
"cve_id": "CVE-2024-12345",
"vendor": "Microsoft",
"product": "Windows Server",
"vulnerability_name": "Remote Code Execution",
"description": "An attacker can execute arbitrary code...",
"cvss_score": 9.8,
"date_added": "2025-11-15",
"due_date": "2025-12-15",
"ransomware_use": true,
"mitigation": "Apply security patch KB5012345"
}
}Data Visualization
POST /api/dspy/visualization-pipeline
Generate dynamic visualizations from query.
Request Body:
{
"query": "Show flood damage by building type in Miami",
"data_context": {
"location": "Miami, FL",
"hazard": "flood"
},
"chart_preferences": {
"type": "auto",
"color_scheme": "blue"
}
}Response:
{
"success": true,
"visualization": {
"type": "bar_chart",
"title": "Flood Damage by Building Type - Miami, FL",
"data": [
{"category": "Residential", "value": 125000},
{"category": "Commercial", "value": 350000}
],
"config": {
"x_axis": "Building Type",
"y_axis": "Estimated Damage ($)",
"color": "#0088FE"
}
}
}POST /api/dspy/categorize-query
Categorize query for visualization routing.
Request Body:
{
"query": "Show earthquake risk distribution"
}Response:
{
"category": "spatial_distribution",
"recommended_chart": "map",
"confidence": 0.92
}PEFT Adapters (Domain Specialization)
35 Production Domains: All adapters trained on Llama 3.1 70B with LoRA, deployed on Modal Cloud with GPU inference.
GET /api/peft/adapters
List available PEFT adapters (35 domains).
Query Parameters:
domain(optional): Filter by specific domainstatus(optional): Filter by deployment status
Response:
{
"status": "success",
"count": 35,
"trained_domains": [
"academic_research", "CA_education_code", "CA_government_code",
"climate", "cybersecurity", "education", "emergency_management",
"environmental", "financial", "geopolitical", "healthcare",
"hr-employment", "infrastructure", "insurance", "insurance_exposures",
"law_enforcement", "legal", "liability", "municipal", "municipal_codes",
"natural_disasters", "nepa", "operational", "procurement", "property",
"public_education", "public_financing", "regulatory", "reputational",
"risk-analysis", "school-risk", "supply_chain", "technology",
"utilities", "workers-comp"
],
"adapters": [
{
"adapter_id": "cybersecurity_v20251206_120000",
"domain": "cybersecurity",
"version": "v1.0",
"deployment_status": "active",
"training_samples": 1800,
"accuracy": 0.94,
"size_mb": 45.2,
"base_model": "meta-llama/Llama-3.1-70B-Instruct",
"lora_config": {
"rank": 16,
"alpha": 32,
"learning_rate": 0.0002
},
"created_at": "2025-12-06T12:00:00Z",
"query_explorer_enabled": true
},
{
"adapter_id": "public_education_v20251205_093000",
"domain": "public_education",
"version": "v1.0",
"deployment_status": "testing",
"training_samples": 2000,
"size_mb": 48.7,
"created_at": "2025-12-05T09:30:00Z"
}
]
}POST /api/peft/inference
Run inference with domain-specific adapter.
Request Body:
{
"query": "What cybersecurity controls are required for storing student data?",
"domain": "cybersecurity",
"adapter_version": "v1.0",
"max_new_tokens": 512,
"temperature": 0.7
}Response:
{
"status": "success",
"query": "What cybersecurity controls are required for storing student data?",
"domain": "cybersecurity",
"response": "For storing student data, FERPA requires:\n\n1. **Access Controls**: Role-based permissions limiting access to authorized personnel only\n2. **Encryption**: AES-256 encryption at rest and TLS 1.3 in transit\n3. **Audit Logging**: Track all access and modifications with timestamp and user ID\n4. **Multi-Factor Authentication**: Required for any remote access\n5. **Data Classification**: Mark all student records as 'Confidential'\n\nAdditional state requirements may apply depending on jurisdiction.",
"metadata": {
"adapter_version": "v1.0",
"adapter_loaded": true,
"inference_time_ms": 1850,
"tokens_generated": 147
}
}POST /api/peft/train
SuperAdmin Only - Train a new PEFT adapter.
Request Body:
{
"domain": "cybersecurity",
"training_data_size": 1500,
"epochs": 10,
"lora_rank": 16,
"lora_alpha": 32,
"learning_rate": 0.0002
}Response:
{
"status": "success",
"job_id": "550e8400-e29b-41d4-a716-446655440000",
"adapter_id": "cybersecurity_v20251206_143022",
"domain": "cybersecurity",
"estimated_time_minutes": 60,
"estimated_cost_usd": 1.50,
"message": "Training job queued. Check status with /api/peft/training/status/{job_id}"
}GET /api/peft/training/status/{job_id}
Check training job status (async training with real-time updates).
Path Parameters:
job_id: Training job UUID
Response (In Progress):
{
"status": "success",
"job_id": "550e8400-e29b-41d4-a716-446655440000",
"training_status": "training",
"progress_percent": 45,
"current_epoch": 5,
"total_epochs": 10,
"elapsed_time_seconds": 1800,
"estimated_remaining_minutes": 20
}Response (Completed):
{
"status": "success",
"training_status": "completed",
"progress_percent": 100,
"training_loss": 0.42,
"adapter_id": "cybersecurity_v20251206_143022",
"adapter_size_mb": 45.2,
"training_time_seconds": 3600
}POST /api/peft/test
SuperAdmin Only - Run A/B test comparing base model vs adapter.
Request Body:
{
"adapter_id": "cybersecurity_v20251206_143022",
"domain": "cybersecurity",
"test_queries": [
"What is a SQL injection attack?",
"How do I prevent XSS vulnerabilities?",
"What are the requirements for PCI DSS compliance?",
"How should passwords be stored securely?",
"What is zero trust architecture?"
]
}Response:
{
"status": "success",
"adapter_id": "cybersecurity_v20251206_143022",
"domain": "cybersecurity",
"average_improvement": 0.23,
"recommendation": "approve",
"test_results": [
{
"query": "What is a SQL injection attack?",
"base_response": {
"answer": "SQL injection is a code injection technique...",
"confidence": 0.75,
"processing_time_ms": 1200
},
"adapter_response": {
"answer": "SQL injection (SQLi) is a critical web security vulnerability (OWASP Top 10) that allows attackers to...",
"confidence": 0.92,
"processing_time_ms": 1100
},
"accuracy_improvement": 0.17,
"confidence_improvement": 0.17
}
],
"metadata": {
"tested_at": "2025-12-06T15:30:00Z",
"num_queries": 5
}
}POST /api/peft/approve
SuperAdmin Only - Approve adapter for production deployment.
Request Body:
{
"domain": "cybersecurity",
"approved_by": "admin@example.com",
"notes": "94% accuracy on test queries, 17% improvement over base model",
"test_results": { /* A/B test results */ }
}Response:
{
"status": "success",
"message": "Adapter approved for domain: cybersecurity",
"adapter_id": "cybersecurity_v20251206_143022",
"deployment_status": "approved"
}Error Responses
All endpoints follow consistent error formatting:
{
"success": false,
"error": {
"code": "AUTHENTICATION_FAILED",
"message": "Invalid JWT token",
"details": "Token has expired",
"timestamp": "2025-12-01T10:00:00Z"
}
}Common Error Codes:
| Code | HTTP Status | Description |
|---|---|---|
AUTHENTICATION_FAILED | 401 | Invalid or expired token |
AUTHORIZATION_DENIED | 403 | Insufficient permissions |
RESOURCE_NOT_FOUND | 404 | Requested resource doesn't exist |
VALIDATION_ERROR | 400 | Invalid request parameters |
RATE_LIMIT_EXCEEDED | 429 | Too many requests |
COLD_START_TIMEOUT | 503 | Modal service initializing (retry in 30s) |
INTERNAL_ERROR | 500 | Unexpected server error |
Rate Limits
| Tier | Requests/Hour | Concurrent Requests |
|---|---|---|
| Basic | 100 | 2 |
| Professional | 1,000 | 10 |
| Enterprise | 10,000 | 50 |
Rate Limit Headers:
X-RateLimit-Limit: 1000
X-RateLimit-Remaining: 950
X-RateLimit-Reset: 1733054400Cold Start Behavior
Modal services sleep after 5-10 minutes of inactivity. First request after sleep:
- Expected delay: 30-60 seconds
- HTTP status: 503 (Service Unavailable) or timeout
- Solution: Retry after 30 seconds
Example retry logic:
async function fetchWithRetry(url: string, retries = 3) {
for (let i = 0; i < retries; i++) {
const response = await fetch(url);
if (response.status !== 503) return response;
await new Promise(resolve => setTimeout(resolve, 30000));
}
throw new Error('Service unavailable after retries');
}SDK Examples
TypeScript/JavaScript
import { PublicRiskAPI } from '@publicrisk/sdk';
const api = new PublicRiskAPI({
baseUrl: 'https://publicrisk--publicrisk-consolidated-backend-serve.modal.run',
apiKey: 'your-jwt-token'
});
// Property risk assessment
const risk = await api.hazus.assessProperty({
lat: 34.0522,
lng: -118.2437,
propertyValue: 500000,
yearBuilt: 2010
});
console.log(`Overall Risk Score: ${risk.overall_risk.score}`);
// STORM document generation
const job = await api.storm.generate({
topic: 'Wildfire Risk Assessment',
template: 'risk_assessment',
parameters: {
research_depth: 'comprehensive'
}
});
const status = await api.storm.getStatus(job.job_id);Python
from publicrisk_sdk import PublicRiskAPI
api = PublicRiskAPI(
base_url='https://publicrisk--publicrisk-consolidated-backend-serve.modal.run',
api_key='your-jwt-token'
)
# RAG document upload
with open('policy.pdf', 'rb') as f:
result = api.rag.upload(
file=f,
rag_store='policy_library',
category='insurance_policy'
)
print(f"Uploaded: {result.document_id}")
# Search RAG
results = api.rag.search(
query='What is the cyber liability limit?',
rag_store='policy_library',
limit=5
)
for result in results:
print(f"Score: {result.score}, Content: {result.content}")Related Documentation
- HAZUS Detailed Guide - Complete HAZUS integration documentation
- STORM Generator - Document generation workflows
- Getting Started - Setup and configuration
- Architecture Overview - System design and infrastructure
Support
For API support:
- Documentation: docs.publicrisk.ai
- Email: api-support@publicrisk.ai
- Status Page: status.publicrisk.ai
- Enterprise Support: Available for Enterprise tier customers
PELICUN Loss Assessment - Technical Guide
Complete technical documentation for PELICUN probabilistic loss assessment including multi-hazard analysis, SIPmath integration, component damage, repair timelines, and casualty estimation
Deployment Guide
Complete deployment guide for PublicRisk.ai frontend and backend services